博客
关于我
强烈建议你试试无所不能的chatGPT,快点击我
ZOJ Problem Set - 3329(概率DP)
阅读量:7236 次
发布时间:2019-06-29

本文共 2558 字,大约阅读时间需要 8 分钟。

One Person Game

Time Limit: 1 Second     
Memory Limit: 32768 KB     
Special Judge

There is a very simple and interesting one-person game. You have 3 dice, namely Die1, Die2 and Die3. Die1 has K1 faces. Die2 has K2 faces. Die3 has K3 faces. All the dice are fair dice, so the probability of rolling each value, 1 to K1, K2, K3 is exactly 1 / K1, 1 / K2 and 1 / K3. You have a counter, and the game is played as follow:

  1. Set the counter to 0 at first.
  2. Roll the 3 dice simultaneously. If the up-facing number of Die1 is a, the up-facing number of Die2 is b and the up-facing number of Die3 is c, set the counter to 0. Otherwise, add the counter by the total value of the 3 up-facing numbers.
  3. If the counter's number is still not greater than n, go to step 2. Otherwise the game is ended.

Calculate the expectation of the number of times that you cast dice before the end of the game.

Input

There are multiple test cases. The first line of input is an integer T (0 < T <= 300) indicating the number of test cases. Then T test cases follow. Each test case is a line contains 7 non-negative integers n, K1, K2, K3, a, b, c (0 <= n <= 500, 1 < K1, K2, K3 <= 6, 1 <= a <= K1, 1 <= b <= K2, 1 <= c <= K3).

Output

For each test case, output the answer in a single line. A relative error of 1e-8 will be accepted.

Sample Input

20 2 2 2 1 1 10 6 6 6 1 1 1

Sample Output

1.1428571428571431.004651162790698

本题通过代换系数,化简后求系数。

一般形成环的用高斯消元法求解。但是此题都是和dp[0]相关。所有可以分离出系数。

dp[i]表示达到i还要掷几次的期望,每一项都和dp[0]有关,且可表示成dp[i]=A[i]*dp[0]+B[0];

所以只要求出dp[0]的系数A,B就可以求出dp[0]=B[0]/(1-A[0]);

dp[n] = dp[0]/k1/k1/k1+1;

然后递推可推出dp[0]的系数;

1 #include
2 #include
3 #include
4 #define M(a,b) memset(a,b,sizeof(a)) 5 6 using namespace std; 7 8 double A[1005],B[1005]; 9 int n,k1,k2,k3,a,b,c;10 11 int main()12 {13 int t;14 scanf("%d",&t);15 while(t--)16 {17 M(A,0);18 M(B,0);19 scanf("%d%d%d%d%d%d%d",&n,&k1,&k2,&k3,&a,&b,&c);20 A[n] = 1.0/(k1*k2*k3);21 B[n] = 1;22 for(int i = n-1;i>=0;i--)23 {24 for(int p = 1;p<=k1;p++)25 for(int q = 1;q<=k2;q++)26 for(int r = 1;r<=k3;r++)27 {28 if(p!=a||q!=b||r!=c)29 {30 A[i] += A[i+p+q+r]/(k1*k2*k3);31 B[i] += B[i+p+q+r]/(k1*k2*k3);32 }33 //cout<
<<' '<
<

 

转载于:https://www.cnblogs.com/haohaooo/p/4037884.html

你可能感兴趣的文章
Redis 有序集合
查看>>
mobile调试方法
查看>>
elasticsearch 爬坑记
查看>>
Fundebug能够捕获这些BUG
查看>>
React系列---Redux异步流
查看>>
[LeetCode] Different Ways to Add Parentheses
查看>>
C++11: 右值引用 addition
查看>>
【Memache】部署Memcache,采用Supervisord管理
查看>>
微服务指南走北(五):什么样的服务才可以说是微服务?
查看>>
在virtualbox 下安装ubuntu 并配置共享文件夹
查看>>
cp、mv、install
查看>>
Redis学习笔记——dict
查看>>
前端实例练习 - 动效伸缩搜索框
查看>>
Laravel 中间件
查看>>
Laravel5.4 Api Token认证
查看>>
vue.js总结
查看>>
一步一步开发安卓下的react-native应用系列之前言
查看>>
使用Google Zxing生成二维码的例子
查看>>
用 PostgreSQL 的 COPY 导入导出 CSV
查看>>
Ruby 2.x 源代码学习:ubuntu 环境 下载,编译,调试 ruby 源代码
查看>>